(4/a-2)+(5/a+2)=(5/a^2-4)

Simple and best practice solution for (4/a-2)+(5/a+2)=(5/a^2-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/a-2)+(5/a+2)=(5/a^2-4) equation:


D( a )

a^2 = 0

a = 0

a^2 = 0

a^2 = 0

1*a^2 = 0 // : 1

a^2 = 0

a = 0

a = 0

a = 0

a in (-oo:0) U (0:+oo)

4/a+5/a-2+2 = 5/(a^2)-4 // - 5/(a^2)-4

4/a+5/a-(5/(a^2))-2+2+4 = 0

4/a+5/a-5*a^-2-2+2+4 = 0

9*a^-1-5*a^-2+4 = 0

t_1 = a^-1

9*t_1^1-5*t_1^2+4 = 0

9*t_1-5*t_1^2+4 = 0

DELTA = 9^2-(-5*4*4)

DELTA = 161

DELTA > 0

t_1 = (161^(1/2)-9)/(-5*2) or t_1 = (-161^(1/2)-9)/(-5*2)

t_1 = (161^(1/2)-9)/(-10) or t_1 = (161^(1/2)+9)/10

t_1 = (161^(1/2)-9)/(-10)

a^-1-((161^(1/2)-9)/(-10)) = 0

1*a^-1 = (161^(1/2)-9)/(-10) // : 1

a^-1 = (161^(1/2)-9)/(-10)

-1 < 0

1/(a^1) = (161^(1/2)-9)/(-10) // * a^1

1 = ((161^(1/2)-9)/(-10))*a^1 // : (161^(1/2)-9)/(-10)

-10*(161^(1/2)-9)^-1 = a^1

a = -10*(161^(1/2)-9)^-1

t_1 = (161^(1/2)+9)/10

a^-1-((161^(1/2)+9)/10) = 0

1*a^-1 = (161^(1/2)+9)/10 // : 1

a^-1 = (161^(1/2)+9)/10

-1 < 0

1/(a^1) = (161^(1/2)+9)/10 // * a^1

1 = ((161^(1/2)+9)/10)*a^1 // : (161^(1/2)+9)/10

10*(161^(1/2)+9)^-1 = a^1

a = 10*(161^(1/2)+9)^-1

a in { -10*(161^(1/2)-9)^-1, 10*(161^(1/2)+9)^-1 }

See similar equations:

| b-5/4=b+2/3 | | -13=3-2x-4 | | -8x(.09)x(-.5)= | | -110=-5x | | 6r-7(4r+2)=28-8r | | 10+5x-7=8x+8-3x | | 3x^3y+3x^2-9x^2y=0 | | 4.50+0.05x=0.2x | | 8n+2=-2n-8 | | p-38=47/5(h-7) | | -(2x-7)=7-2x | | 1-6n-1=18 | | 4y+2+6y-50=180 | | 3(-2x+1)-5=10 | | -2p+3=p+9 | | .5y-3=2y+12 | | s+6=4 | | -6=6x-6+x | | -(y-3)=2y+6 | | 4.50+0.05=0.20x-4.50 | | 4=-8.0n | | x+(26+x)=64 | | 5w^2+12w^2= | | 8(y-1)=3y+17 | | -5k-2k=14 | | -4-9/3=-7 | | -7(n+3)=-34+6n | | 64x^2-192x=0 | | 4.7=30 | | .4*-.03= | | 7x+22=11x+68 | | V-39=-17 |

Equations solver categories